Олимпиадные задачи из источника «1994 год» для 11 класса - сложность 3 с решениями
Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...
В круглый бокал, осевое сечение которого — график функции<i>y</i>=<i>x</i><sup>4</sup>, опускают вишенку — шар радиуса<i>r</i>. При каком наибольшем<i>r</i>шар коснется нижней точки дна? (Другими словами, каков максимальный радиус<i>r</i>круга, лежащего в области<i>y</i>$\ge$<i>x</i><sup>4</sup>и содержащего начало координат?)
Существует ли такой многочлен <i>P</i>(<i>x</i>), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (<i>P</i>(<i>x</i>))<sup><i>n</i></sup>, <i>n</i> > 1, положительны?