Олимпиадные задачи из источника «1993 год» для 2-7 класса - сложность 2 с решениями

Бумажный треугольник с углами 20°, 20°, 140° разрезается по одной из своих биссектрис на два треугольника, один из которых также разрезается по биссектрисе, и так далее. Может ли после нескольких разрезов получиться треугольник, подобный исходному?

Для двух данных различных точек плоскости<i>A</i>и<i>B</i>найдите геометрическое место таких точек<i>C</i>, что треугольник<i>ABC</i>остроугольный, а его угол<i>A</i> - средний по величине.Комментарий. Под<i>средним по величине</i>углом мы понимаем угол, который<i>не больше</i>одного из углов, и<i>не меньше</i>другого. Так, например, мы считаем, что у равностороннего треугольника любой угол - средний по величине.

Известно, что число <i>n</i> является суммой квадратов трёх натуральных чисел. Показать, что число <i>n</i>² тоже является суммой квадратов трёх натуральных чисел.

Обозначим через <i>S</i>(<i>x</i>) сумму цифр натурального числа <i>x</i>. Решить уравнения:

  а)  <i>x + S</i>(<i>x</i>) + <i>S</i>(<i>S</i>(<i>x</i>)) = 1993;

  б)  <i>x + S</i>(<i>x</i>) + <i>S</i>(<i>S</i>(<i>x</i>)) + <i>S</i>(<i>S</i>(<i>S</i>(<i>x</i>))) = 1993.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка