Олимпиадные задачи из источника «1993 год» для 10 класса - сложность 2 с решениями
Известно, что<i>tg</i> $\alpha$+<i>tg</i> $\beta$=<i>p</i>,<i>ctg</i> $\alpha$+<i>ctg</i> $\beta$=<i>q</i>. Найти <i>tg</i> ($\alpha$+$\beta$).
При разложении чисел <i>A</i> и <i>B</i> в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа <i>A + B</i>?
Известно, что число <i>n</i> является суммой квадратов трёх натуральных чисел. Показать, что число <i>n</i>² тоже является суммой квадратов трёх натуральных чисел.