Олимпиадные задачи из источника «1991 год» для 10-11 класса - сложность 2-3 с решениями
На прямоугольном экране размером <i>m</i>×<i>n</i>, разбитом на единичные клетки, светятся более (<i>m</i> – 1)(<i>n</i> – 1) клеток. Если в каком-либо квадрате 2×2 не светятся три клетки, то через некоторое время погаснет и четвёртая. Докажите, что тем не менее на экране всегда будет светиться хотя бы одна клетка.
Функция<i>f</i>(<i>x</i>) при каждом значении <i>x</i>∈ (− ∞, + ∞) удовлетворяет равенству <i>f</i>(<i>x</i>) + (<i>x</i>+ ½)<i>f</i>(1 −<i>x</i>) = 1. а) Найдите<i>f</i>(0) и<i>f</i>(1). б) Найдите все такие функции<i>f</i>(<i>x</i>).
Докажите, что в правильном двенадцатиугольнике <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>12</sub> диагонали <i>A</i><sub>1</sub><i>A</i><sub>5</sub>, <i>A</i><sub>2</sub><i>A</i><sub>6</sub>, <i>A</i><sub>3</sub><i>A</i><sub>8</sub> и <i>A</i><sub>4</sub><i>A</i><sub>11</sub> пересекаются в одной точке.
Решите уравнение (1 + <i>x + x</i>²)(1 + <i>x + ... + x</i><sup>10</sup>) = (1 + <i>x + ... + x</i><sup>6</sup>)².