Олимпиадные задачи из источника «10 класс»

Куб размером10×10×10 сложен из 500 чёрных и 500 белых кубиков в шахматном порядке (кубики, примыкающие друг к другу гранями, имеют различные цвета). Из этого куба вынули 100 кубиков так, чтобы в каждом из 300 рядов размером1×1×10, параллельных какому-нибудь ребру куба, не хватало ровно одного кубика. Докажите, что число вынутых чёрных кубиков делится на 4.

Функция<i>f</i>(<i>x</i>) при каждом значении  <i>x</i>∈ (− ∞, + ∞)  удовлетворяет равенству  <i>f</i>(<i>x</i>) + (<i>x</i>+ ½)<i>f</i>(1 −<i>x</i>) = 1.   а) Найдите<i>f</i>(0) и<i>f</i>(1).   б) Найдите все такие функции<i>f</i>(<i>x</i>).

Даны две непересекающиеся окружности, к которым проведены две общие внешние касательные. Рассмотрим равнобедренный треугольник, основание которого лежит на одной касательной, противоположная вершина – на другой, а каждая из боковых сторон касается одной из данных окружностей. Докажите, что высота треугольника равна сумме радиусов окружностей.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка