Олимпиадные задачи из источника «7 класс» - сложность 1-5 с решениями
7 класс
НазадВ магазин привезли цистерну молока. У продавца имеются чашечные весы без гирь (на чашки весов можно ставить фляги), а также три одинаковые фляги, две из которых пустые, а в третьей налит 1 л молока. Как отлить в одну флягу ровно 85 л молока, сделав не более восьми взвешиваний?
В центре квадрата сидит заяц, а в каждом из четырёх углов по одному волку. Может ли заяц выбежать из квадрата, если волки могут бегать только по сторонам квадрата с максимальной скоростью в 1,4 раза большей, чем максимальная скорость зайца?
Длины<i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>четырёх отрезков удовлетворяют неравенствам 0 <<i>a</i>≤<i>b</i>≤<i>c</i><<i>d</i>, <i>d</i><<i>a</i>+<i>b</i>+<i>c</i>. Можно ли из этих отрезков сложить трапецию?
Даны пять различных положительных чисел, которые можно разбить на две группы так, чтобы суммы чисел в этих группах были одинаковыми. Сколькими способами это можно сделать?
Найти все значения <i>x</i> и <i>y</i>, удовлетворяющие равенству <i>xy</i> + 1 = <i>x + y</i>.