Олимпиадные задачи из источника «1983 год» - сложность 3 с решениями

За круглым столом сидят 13 богатырей из <i>k</i> городов, где  1 < <i>k</i> < 13.  Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже <i>k</i>. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.

Доказать, что  4<sup><i>m</i></sup> − 4<sup><i>n</i></sup>  делится на 3<sup><i>k</i>+1</sup> тогда и только тогда, когда  <i>m − n</i>  делится на 3<sup><i>k</i></sup>.

Доказать, что  1<sup>1983</sup> + 2<sup>1983</sup> + ... + 1983<sup>1983</sup>  делится на  1 + ... + 1983.

В вершинах правильного 1983-угольника расставлены числа 1, 2, ..., 1983. Любая его ось симметрии делит числа, не лежащие на ней, на два множества. Назовём расстановку "хорошей" относительно данной оси симметрии, если каждое число одного множества больше симметричного ему числа. Существует ли расстановка, являющаяся "хорошей" относительно <i>любой</i> оси симметрии?

Существует ли пятиугольник со сторонами 3, 4, 9, 11 и 13 см, в который можно вписать окружность?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка