Олимпиадные задачи из источника «1978 год» для 4-10 класса - сложность 2-5 с решениями

У белой сферы 12% её площади окрашено в красный цвет. Доказать, что в сферу можно вписать параллелепипед, у которого все вершины белые.

На плоскости расположено несколько прямых и точек. Доказать, что на плоскости найдётся точка<i>A</i>, не совпадающая ни с одной из данных точек, расстояние от которой до любой из данных точек больше расстояния от неё до любой из данных прямых.

Существует ли на плоскости конечный набор различных векторов$\overrightarrow{a_1}$,$\overrightarrow{a_2}$, ...,$\overrightarrow{a_n}$такой, что для любой пары различных векторов из этого набора найдётся такая другая пара из этого набора, что суммы каждой из пар равны между собой?

Доказать, что в прямоугольник размером2<i>n</i>×2<i>m</i>(<i>n</i>и<i>m</i>— целые) можно уложить в два слоя кости домино размером 1×2 так, чтобы каждый слой полностью покрывал прямоугольник и чтобы никакие две кости из разных слоёв не совпадали друг с другом.

Найти все пары целых чисел  (<i>x, y</i>),  удовлетворяющие уравнению   3·2<sup><i>x</i></sup> + 1 = <i>y</i>².

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка