Олимпиадные задачи из источника «10 класс, 1 тур» - сложность 3 с решениями
10 класс, 1 тур
НазадЛежит кучка в 10 миллионов спичек. Двое играют в следующую игру. Ходят по очереди. За один ход играющий может взять из кучки спички в количестве <i>p<sup>n</sup></i>, где <i>p</i> – простое число, <i>n</i> = 0, 1, 2, 3, ... (например, первый берёт 25 спичек, второй – 8, первый – 1, второй – 5, первый – 49 и т.д.). Выигрывает тот, кто берёт последнюю спичку. Кто выиграет при правильной игре?
<i>n</i>точек расположены в вершинах выпуклого<i>n</i>-угольника. Внутри этого<i>n</i>-угольника отметили<i>k</i>точек. Оказалось, что любые три из<i>n</i>+<i>k</i>точек не лежат на одной прямой и являются вершинами равнобедренного треугольника. Чему может быть равно число<i>k</i>?