Олимпиадные задачи из источника «1970 год» для 3-7 класса - сложность 2-3 с решениями
Известно, что в кадр фотоаппарата, расположенного в точке<i>O</i>, не могут попасть предметы<i>A</i>и<i>B</i>такие, что угол<i>AOB</i>больше179<sup><tt>o</tt></sup>. На плоскости поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано не больше 998 фотоаппаратов.
У числа 2<sup>1970</sup> зачеркнули его первую цифру и прибавили её к оставшемуся числу. С результатом проделали ту же операцию и т.д., до тех пор пока не получили десятизначное число. Доказать, что в этом числе есть две одинаковые цифры.