Олимпиадные задачи из источника «1969 год» для 2-9 класса - сложность 3 с решениями

В стране Анчурии, где правит президент Мирафлорес, приблизилось время новых президентских выборов. В стране ровно 20 миллионов избирателей, из которых только один процент поддерживает Мирафлореса (регулярная армия Анчурии). Мирафлорес, естественно, хочет быть избранным, но, с другой стороны, он хочет, чтобы выборы были "демократическими". "Демократическим голосованием" Мирафлорес называет вот что: все избиратели разбиваются на равные группы; каждая из этих групп вновь разбивается на некоторое количество равных групп, причём большие группы могут разбиваться на разное количество меньших групп, затем эти группы снова разбиваются и т.д. В самых мелких группах выбирают представителя группы "<i>выборщика</i>" для голосования в большей группе: выборщики в...

Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.

Существует ли такое число <i>h</i>, что ни для какого натурального числа <i>n</i> число  [<i>h</i>·1969<sup><i>n</i></sup>] не делится на [<i>h</i>·1969<sup><i>n</i>–1</sup>]?

Дан треугольник <i>ABC</i>, который можно накрыть одним пятаком. Постройте с помощью пятака четвёртую вершину параллелограмма <i>ABCD</i> (пятак разрешается прикладывать к любым двум точкам и обводить карандашом).

Дан отрезок <i>AB</i>. Найдите на плоскости множество таких точек <i>C</i>, что медиана треугольника <i>ABC</i>, проведённая из вершины <i>A</i>, равна высоте, проведённой из вершины <i>B</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка