Олимпиадные задачи из источника «9 класс, 2 тур» для 2-11 класса - сложность 2-5 с решениями

Дано натуральное число <i>N</i>. С ним производится следующая операция: каждая цифра этого числа заносится на отдельную карточку (при этом разрешается добавлять или выбрасывать любое число карточек, на которых написана цифра 0), и затем эти карточки разбивают на две кучи. В каждой из них карточки располагаются в произвольном порядке, и полученные два числа складываются. С полученным числом <i>N</i><sub>1</sub> проделывается такая же операция, и т.д. Докажите, что за 15 шагов из <i>N</i> можно получить однозначное число.

Известно, что  <i>a<sup>n</sup> – b<sup>n</sup></i>  делится на <i>n</i> (<i>a, b, n</i> – натуральные числа,  <i>a ≠ b</i>).  Доказать, что <img width="60" height="51" align="MIDDLE" border="0" src="/storage/problem-media/78682/problem_78682_img_2.gif"> делится на <i>n</i>.

Белые и чёрные играют в следующую игру. В углах шахматной доски стоят два короля: белый на a1, чёрный на h8. Играющие делают ход по очереди. Начинают белые. Играющий может ставить своего короля на любое соседнее поле (если только оно свободно), соблюдая следующие правила: нельзя увеличивать расстояние между королями (расстоянием между двумя полями называется наименьшее число шагов короля, за которое он может пройти с одного поля на другое: так, в начале игры расстояние между королями – 7 ходов). Выигрывает тот, кто поставит своего короля на противоположную кромку доски (белого короля на вертикаль h или восьмую горизонталь, чёрного – на вертикаль a или первую горизонталь). Кто выиграет при правильной игре?

На окружности радиуса 1 отмечена точка<i>O</i>и из неё циркулем делается засечка вправо радиусом<i>l</i>. Из полученной точки<i>O</i><sub>1</sub>в ту же сторону тем же радиусом делается вторая засечка, и так делается 1968 раз. После этого окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться?

На плоскости нарисован правильный многоугольник<i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub><i>A</i><sub>5</sub>. Можно ли выбрать в плоскости множество точек, обладающее следующим свойством: через любую точку, не лежащую внутри пятиугольника, можно провести отрезок, концы которого являются точками нашего множества, а через точки, лежащие внутри пятиугольника, такого отрезка провести нельзя. <b>Примечание.</b>

  1. Отрезок проходит через любую свою точку, в частности, через свой конец.

  2. "Внутри" — значит строго внутри.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка