Олимпиадные задачи из источника «8 класс, 1 тур» для 3-11 класса - сложность 2 с решениями

Известно, что  <i>ax</i><sup>4</sup> + <i>bx</i>³ + <i>cx</i>² + <i>dx + e</i>,  где <i>a, b, c, d, e</i> – данные целые числа, при любом целом <i>x</i> делится на 7.

Доказать, что все числа <i>a, b, c, d, e</i> делятся на 7.

Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым.

Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.

Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка