Олимпиадные задачи из источника «8 класс, 1 тур» - сложность 1-5 с решениями
8 класс, 1 тур
НазадДоказать неравенство<div align="CENTER"> $\displaystyle {\frac{2-\overbrace{\sqrt{2+\sqrt{2+\dots+\sqrt{2}}}}^{n{\rm раз}}}{2-\underbrace{\sqrt{2+\sqrt{2+\dots+\sqrt{2}}}}_{n-1{\rm раз}}}}$ > $\displaystyle {\textstyle\frac{1}{4}}$. </div>
Три окружности попарно касаются друг друга. Через три точки касания проводим окружность. Доказать, что эта окружность перпендикулярна к каждой из трёх исходных. (Углом между двумя окружностями в точке их пересечения называется угол, образованный их касательными в этой точке.)
Разделить отрезок пополам с помощью угольника. (С помощью угольника можно проводить прямые и восстанавливать перпендикуляры, опускать перпендикуляры нельзя.)
Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?