Олимпиадные задачи из источника «1 тур» для 6-9 класса - сложность 2-4 с решениями
1 тур
НазадДаны прямая и две точки<i>A</i>и<i>B</i>по одну сторону от неё. Найти на прямой такую точку<i>M</i>, чтобы сумма<i>MA</i>+<i>MB</i>равнялась заданному отрезку.
Решить систему:
<i>x + y + z = a,
x</i>² + <i>y</i>² + <i>z</i>² = <i>a</i>²,
<i>x</i>³ + <i>y</i>³ + <i>z</i>³ = <i>a</i>³.