Олимпиадные задачи из источника «Международная Математическая Олимпиада» для 9 класса - сложность 5 с решениями

Каждая пара противоположных сторон данного выпуклого шестиугольника обладает следующим свойством: расстояние между серединами равно<i> <img src="/storage/problem-media/111041/problem_111041_img_2.gif">/</i>2умноженное на сумму их длин. Докажите, что все углы в шестиугольнике равны.

Рассмотрим 5 точек<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>,<i>E</i>так что<i>A</i><i>B</i><i>C</i><i>D</i>- параллелограмм,<i>B</i><i>C</i><i>E</i><i>D</i>лежат на одной окружности.<i>A</i>∈<i>l</i>, прямая<i>l</i>пересекает внутренность [<i>D</i><i>C</i>] в<i>F</i>и прямую<i>B</i><i>C</i>в<i>G</i>. Пусть<i>E</i><i>F</i>=<i>E</i><i>G</i>=<i>E</i><i>C</i>. Доказать, что<i>l</i>- биссектриса угла<i>D</i><i>A</i><i>B</i>...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка