Олимпиадные задачи из источника «2005 год» - сложность 2 с решениями
Решите ребус 250ЛЕТ+МГУ=2005ГОД. (Разными буквами обозначены разные цифры, а одинаковыми - одинаковые; при этом некоторыми буквами могут быть обозначены уже имеющиеся цифры 2, 5 и 0.) а) Найдите хотя бы одно решение ребуса; б) Докажите, что других решений нет.
Бумага расчерчена на клеточки со стороной 1. Ваня вырезал из неё по клеточкам прямоугольник и нашёл его площадь и периметр. Таня отобрала у него ножницы и со словами "Смотри, фокус!" вырезала с краю прямоугольника по клеточкам квадратик, квадратик выкинула и объявила: "Теперь у оставшейся фигуры периметр такой же, какая была площадь прямоугольника, а площадь - как был периметр!" Ваня убедился, что Таня права. а) Квадратик какого размера вырезала и выкинула Таня? б) Приведите пример такого прямоугольника и такого квадрата. в) Прямоугольник каких размеров вырезал Ваня?
Зачеркните все шестнадцать точек, изображённых на рисунке, шестью отрезками, не отрывая карандаша от бумаги и не проводя отрезков по линиям сетки. <div align="center"><img src="/storage/problem-media/86096/problem_86096_img_2.gif"></div>
Можно ли расставить числа
а) от 1 до 7;
б) от 1 до 9
по кругу так, чтобы каждое из них делилось на разность своих соседей?
Незнайка разместил без наложений в квадрате 10*10 только 13 фигур ("скобок"), изображённых на рисунке. Попробуйте разместить больше. <img src="/storage/problem-media/86093/problem_86093_img_2.gif">
В числах МИХАЙЛО и ЛОМОНОСОВ каждая буква обозначает цифру (разным буквам соответствуют разные цифры). Известно, что у этих чисел произведения цифр равны. Могут ли оба числа быть нечётными?
Лиса и два медвежонка делят 100 конфет. Лиса раскладывает конфеты на три кучки; кому какая достанется - определяет жребий. Лиса знает, что если медвежатам достанется разное количество конфет, то они попросят её уравнять их кучки, и тогда она заберёт излишек себе. После этого все едят доставшиеся им конфеты.
а) Придумайте, как Лисе разложить конфеты по кучкам так, чтобы съесть ровно 80 конфет (ни больше, ни меньше).
б) Может ли Лиса сделать так, чтобы в итоге съесть ровно 65 конфет?
На автобусе ездил Андрей
На кружок и обратно домой,
Заплатив 115 рублей,
Покупал он себе проездной.
В январе он его не достал,
И поэтому несколько дней
У шофёра билет покупал
Он себе за 15 рублей.
А в иной день кондуктор с него
Брал 11 только рублей.
Возвращаясь с кружка своего
Всякий раз шёл пешком наш Андрей.
За январь сколько денег ушло,
Посчитал бережливый Андрей:
С удивлением он получил
Аккурат 115 рублей!
Сосчитайте теперь поскорей,
Сколько раз был кружок в январе?