Олимпиадные задачи из источника «ВМШ 57 школы» для 6 класса - сложность 1 с решениями

На прямой через равные промежутки поставили десять точек, и они заняли отрезок длины <i>a</i>. На другой прямой через такие же промежутки поставили 100 точек, и они заняли отрезок длины <i>b</i>. Во сколько раз <i>b</i> больше <i>a</i>?

Мальчик Стёпа говорит: позавчера мне было 10 лет, а в следующем году мне исполнится 13. Может ли такое быть?

31-го декабря Антон сказал, что после Нового Года всё, сказанное им до Нового Года станет ложью. Правду ли он сказал?

a) Докажите, что в любой футбольной команде есть два игрока, которые родились в один и тот же день недели. b) Докажите, что среди жителей Москвы найдутся десять тысяч, празднующих день рождения в один и тот же день.

Монету в 1 копейку обкатывают вокруг такой же монеты. а) Сколько она сделает полных оборотов вокруг<i>своей</i>оси? б) А если её будут обкатывать вокруг монеты в полдоллара? (Напомним, что диаметр копейки - 15 мм, диаметр монеты в полдоллара - 30 мм.)

Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3.

Когда она доползет до цели, если стартовала улитка утром в понедельник?

Несколько гномов, навьючив свою поклажу на пони, отправились в дальний путь. Их заметили тролли, которые насчитали в караване 36 ног и 15 голов. Сколько было гномов, и сколько пони?

Легко можно разрезать квадрат на два равных треугольника или два равных четырёхугольника.

А как разрезать квадрат на два равных пятиугольника или два равных шестиугольника?

Пусть <i>m</i> и <i>n</i> – целые числа. Докажите, что  <i>mn</i>(<i>m + n</i>)  – чётное число.

Ковровая дорожка покрывает лестницу из 9 ступенек. Длина и высота лестницы равны 2 метрам. Хватит ли этой ковровой дорожки, чтобы покрыть лестницу из 10 ступенек длиной и высотой 2 метра?

Доказать: произведение

  а) двух нечётных чисел нечётно;

  б) чётного числа с любым целым числом чётно.

Доказать: сумма

  а) любого количества чётных слагаемых чётна;

  б) чётного количества нечётных слагаемых чётна;

  в) нечётного количества нечётных слагаемых нечётна.

Найти две такие обыкновенные дроби – одну со знаменателем 8, другую со знаменателем 13, чтобы они не были равны, но разность между большей и меньшей из них была как можно меньше.

На хоккейном поле лежат три шайбы<i>А</i>,<i>В</i>и<i>С</i>. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими. Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?

Конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов.

Учитель рисует на листке бумаги несколько кружков и спрашивает одного ученика: Сколько здесь кружков?&#039;&#039;. Семь''- отвечает ученик. Правильно. Так сколько здесь кружков?&#039;&#039; - опять спрашивает учитель другого ученика. Пять'' - отвечает тот. ``Правильно'' - снова говорит учитель. Так сколько же кружков он нарисовал на листке?

Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании.

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка