Олимпиадные задачи из источника «Занятие 15. Разные задачи» для 8-9 класса
Занятие 15. Разные задачи
НазадИмеются два сосуда емкостью 1 л и 2 л. Из содержимого приготовили 0,5 л смеси, содержащей 40% яблочного сока, и 2,5 л смеси, содержащей 88% яблочного сока. Каково процентное содержание яблочного сока в сосудах?
<b>Из двух квадратов один.</b>Имеются два квадрата 3×3 и 1×1. Разрезать эти квадраты прямыми на части (не более трех), из которых можно было бы сложить один квадрат.
<b>Игра со спичками.</b>На столе лежит 37 спичек. Разрешается по очереди брать не более 5 спичек. Выигрывает тот, кто возьмет последнюю. Кто выигрывает при правильной игре?
Опустить из данной точки <i>A</i> вне прямой <i>l</i> перпендикуляр на эту прямую, проведя не более трёх линий? (Третьей линией должен быть перпендикуляр.)
Предложите способ измерения диагонали обычного кирпича, который легко реализуется на практике (без теоремы Пифагора).
Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?