Олимпиадные задачи из источника «2000 год» для 10 класса - сложность 2-5 с решениями

Хорды <i>AC</i> и <i>BD</i> окружности с центром <i>O</i> пересекаются в точке <i>K</i>. Пусть <i>M</i> и <i>N</i> – центры описанных окружностей треугольников <i>AKB</i> и <i>CKD</i> соответственно. Докажите, что  <i>OM = KN</i>.

Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?

Вневписанные окружности касаются сторон <i>AC</i> и <i>BC</i> треугольника <i>ABC</i> в точках <i>K</i> и <i>L</i>. Докажите, что прямая, соединяющая середины <i>KL</i> и <i>AB</i>,

  а) делит периметр треугольника <i>ABC</i> пополам;

  б) параллельна биссектрисе угла <i>ACB</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка