Олимпиадные задачи из источника «1994 год» для 2-7 класса - сложность 3 с решениями

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:  <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

  а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда <i>x</i><sub>1</sub> рационально.

  б) Сколько существует значений <i>x</i><sub>1</sub>, для которых эта последовательность – периодическая с периодом <i>T</i> (для каждого <i>T</i> = 2, 3, ...)?

Через <i>S</i>(<i>n</i>) обозначим сумму цифр числа <i>n</i> (в десятичной записи).

Существуют ли три таких различных натуральных числа <i>m, n</i> и <i>p</i>, что   <i>m + S</i>(<i>m</i>) = <i>n+S</i>(<i>n</i>) = <i>p + S</i>(<i>p</i>)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка