Олимпиадные задачи из источника «выпуск 6» для 9 класса - сложность 2-5 с решениями

Пусть <i>n</i> и <i>b</i> – натуральные числа. Через  <i>V</i>(<i>n, b</i>)  обозначим число разложений <i>n</i> на сомножители, каждый из которых больше <i>b</i> (например:

36 = 6·6 = 4·9 = 3·3·4 = 3·12,  так что  <i>V</i>(36, 2) = 5).  Докажите, что  <i>V</i>(<i>n, b</i>) < <sup><i>n</i></sup>/<sub><i>b</i></sub>.

Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?

Круг разбит на <i>n</i> секторов, в некоторых секторах стоят фишки – всего фишек  <i>n</i> + 1.  Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.

Точка <i>P</i> лежит на описанной окружности треугольника <i>ABC</i>. Построим треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>, стороны которого параллельны отрезкам <i>PA, PB, PC</i>

(<i>B</i><sub>1</sub><i>C</i><sub>1</sub> || <i>PA,  C</i><sub>1</sub><i>A</i><sub>1</sub> || <i>PB,  A</i><sub>1</sub><i>B</i><sub>1</sub> || <i>PC</i>). Через точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> проведены прямые, пар...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка