Олимпиадные задачи из источника «1991 год» для 10 класса

Сумма <i>n</i> чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше  – <sup>1</sup>/<sub><i>n</i></sub>.

На прямоугольном экране размером <i>m</i>×<i>n</i>, разбитом на единичные клетки, светятся более  (<i>m</i> – 1)(<i>n</i> – 1)  клеток. Если в каком-либо квадрате 2×2 не светятся три клетки, то через некоторое время погаснет и четвёртая. Докажите, что тем не менее на экране всегда будет светиться хотя бы одна клетка.

Куб размером10×10×10 сложен из 500 чёрных и 500 белых кубиков в шахматном порядке (кубики, примыкающие друг к другу гранями, имеют различные цвета). Из этого куба вынули 100 кубиков так, чтобы в каждом из 300 рядов размером1×1×10, параллельных какому-нибудь ребру куба, не хватало ровно одного кубика. Докажите, что число вынутых чёрных кубиков делится на 4.

Докажите, что в правильном двенадцатиугольнике <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>12</sub> диагонали <i>A</i><sub>1</sub><i>A</i><sub>5</sub>, <i>A</i><sub>2</sub><i>A</i><sub>6</sub>, <i>A</i><sub>3</sub><i>A</i><sub>8</sub> и <i>A</i><sub>4</sub><i>A</i><sub>11</sub> пересекаются в одной точке.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка