Олимпиадные задачи из источника «1982 год» для 11 класса
а) Доказать, что для любых положительных чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>k</sub></i> (<i>k</i> > 3) выполняется неравенство: <div align="center"><img src="/storage/problem-media/97781/problem_97781_img_2.gif"></div>б) Доказать, что это неравенство ни для какого <i>k</i> > 3 нельзя усилить, то есть доказать, что для каждого фиксированного <i>k</i> нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из <i>k</i> положительных чисел.
В стране больше 101 города. Столица соединена авиалиниями со 100 городами, а каждый город, кроме столицы, соединён авиалиниями ровно с десятью городами (если <i>A</i> соединён с <i>B</i>, то <i>B</i> соединён с <i>A</i>). Известно, что из каждого города можно попасть в любой другой (может быть, с пересадками). Доказать, что можно закрыть половину авиалиний, идущих из столицы, так, что возможность попасть из каждого города в любой другой сохранится.