Олимпиадные задачи из источника «выпуск 4» для 10 класса
выпуск 4
НазадМожно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.
Крестьянин, подойдя к развилке двух дорог, расходящихся под углом 60°, спросил: "Как пройти в село <i>NN</i>?" Ему ответили: "Иди по левой дороге до деревни <i>N</i> – это в 8 верстах отсюда, – там увидишь, что направо под прямым углом отходит большая ровная дорога – это как раз дорога в <i>NN</i>. А можешь идти другим путём: сейчас по правой дороге; как выйдешь к железной дороге, – значит, половину пути прошёл; тут поверни налево и иди прямо по шпалам до самого <i>NN</i>". – "Ну, а какой путь короче-то будет?" – "Да всё равно, что так, что этак, никакой разницы". И пошёл крестьянин по правой дороге.
Сколько вёрст ему придётся идти до <i>NN</i>? Больше десяти или меньше? А если идти...
Если многочлен с целыми коэффициентами при трёх различных целых значениях переменной принимает значение 1, то он не имеет ни одного целого корня. Докажите это.
На дуге <i>BC</i> окружности, описанной около равностороннего треугольника <i>ABC</i>, взята произвольная точка <i>P</i>. Докажите, что <i>AP = BP + CP</i>.