Олимпиадные задачи из источника «выпуск 11» - сложность 4 с решениями
выпуск 11
НазадПять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.
В треугольнике <i>ABC</i> через середину <i>M</i> стороны <i>BC</i> и центр <i>O</i> вписанной в этот треугольник окружности проведена прямая <i>MO</i>, которая пересекает высоту <i>AH</i> в точке <i>E</i>. Докажите, что отрезок <i>AE</i> равен радиусу вписанной окружности.