Олимпиадные задачи из источника «глава 8. Построения» для 9 класса - сложность 3-4 с решениями
глава 8. Построения
НазадДан отрезок <i>OA</i>, параллельный прямой <i>l</i>. С помощью прямого угла постройте точки, в которых окружность радиуса <i>OA</i>с центром <i>O</i>пересекает прямую <i>l</i>.
Даны отрезок <i>AB</i>, прямая <i>l</i>и точка <i>O</i>на ней. С помощью прямого угла постройте на прямой <i>l</i>такую точку <i>X</i>, что <i>OX</i>=<i>AB</i>.
Даны угол <i>AOB</i>и прямая <i>l</i>. С помощью прямого угла проведите прямую <i>l</i><sub>1</sub>так, что угол между прямыми <i>l</i>и <i>l</i><sub>1</sub>равен углу <i>AOB</i>.
Даны прямая <i>l</i>и отрезок <i>OA</i>, параллельный <i>l</i>. С помощью одной двусторонней линейки постройте точки пересечения прямой <i>l</i>с окружностью радиуса <i>OA</i>с центром <i>O</i>.
Даны отрезок <i>AB</i>, непараллельная ему прямая <i>l</i>и точка <i>M</i>на ней. С помощью одной двусторонней линейки постройте точки пересечения прямой <i>l</i>с окружностью радиуса <i>AB</i>с центром <i>M</i>.
Даны угол <i>AOB</i>, прямая <i>l</i>и точка <i>P</i>на ней. С помощью одной двусторонней линейки проведите через точку <i>P</i>прямые, образующие с прямой <i>l</i>угол, равный углу <i>AOB</i>.
Даны окружность, ее диаметр <i>AB</i>и точка <i>P</i>. С помощью одной линейки проведите через точку <i>P</i>перпендикуляр к прямой <i>AB</i>.
Даны две параллельные прямые и точка <i>P</i>. С помощью одной линейки проведите через точку <i>P</i>прямую, параллельную данным прямым.
Даны две параллельные прямые. С помощью одной линейки разделите отрезок, лежащий на одной из них, на <i>n</i>равных частей.
Даны две параллельные прямые и отрезок, лежащий на одной из них. Удвойте этот отрезок с помощью одной линейки.
Даны две параллельные прямые. С помощью одной линейки разделите пополам отрезок, лежащий на одной из данных прямых.
С помощью двусторонней линейки постройте центр данной окружности, диаметр которой больше ширины линейки.
На клочке бумаги нарисованы две прямые, образующие угол, вершина которого лежит вне этого клочка. С помощью циркуля и линейки проведите ту часть биссектрисы угла, которая лежит на клочке бумаги.
Даны диаметр <i>AB</i>окружности и точка <i>C</i>на нем. Постройте на этой окружности точки <i>X</i>и <i>Y</i>, симметричные относительно прямой <i>AB</i>, так, чтобы прямые <i>AX</i>и <i>YC</i>были перпендикулярными.
Постройте прямоугольник с данным отношением сторон, зная по одной точке на каждой из его сторон.
Постройте правильный десятиугольник.
Точки <i>A</i>и <i>B</i>лежат на диаметре данной окружности. Проведите через них две равные хорды с общим концом.
На плоскости даны два отрезка <i>AB</i>и <i>A'B'</i>. Постройте точку <i>O</i>так, чтобы треугольники <i>AOB</i>и <i>A'OB'</i>были подобны (одинаковые буквы обозначают соответственные вершины подобных треугольников).
На прямой даны четыре точки <i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>в указанном порядке. Постройте точку <i>M</i>, из которой отрезки <i>AB</i>,<i>BC</i>,<i>CD</i>видны под равными углами.
Постройте треугольник <i>ABC</i>, если известны длина биссектрисы <i>CD</i>и длины отрезков <i>AD</i>и <i>BD</i>, на которые она делит сторону <i>AB</i>.
Постройте треугольник по <i>a</i>,<i>h</i><sub>a</sub>и <i>b</i>/<i>c</i>.
Даны две точки<i>A</i>и<i>B</i>и окружность. Найти на окружности точку<i>X</i>так, чтобы прямые<i>AX</i>и<i>BX</i>отсекли на окружности хорду<i>CD</i>, параллельную данной прямой<i>MN</i>.
Постройте окружность, равноудалённую от четырёх данных точек.
Даны три точки, не лежащие на одной прямой. Через каждые две из них провести окружность так, чтобы построенные окружности были взаимно ортогональны.
а) Даны две точки <i>A</i>,<i>B</i>и прямая <i>l</i>. Постройте окружность, проходящую через точки <i>A</i>,<i>B</i>и касающуюся прямой <i>l</i>. б) Даны две точки <i>A</i>и <i>B</i>и окружность <i>S</i>. Постройте окружность, проходящую через точки <i>A</i>и <i>B</i>и касающуюся окружности <i>S</i>.