Олимпиадные задачи из источника «параграф 8. Теорема Карно» - сложность 3 с решениями

Докажите, что перпендикуляры, опущенные из точек <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> на стороны <i>BC, CA, AB</i> треугольника <i>ABC</i>, пересекаются в одной точке тогда и только тогда, когда <i>A</i><sub>1</sub><i>B</i>² + <i>C</i><sub>1</sub><i>A</i>² + <i>B</i><sub>1</sub><i>C</i>² = <i>B</i><sub>1</sub><i>A</i>² + <i>A</i><sub>1</sub><i>C</i>² + <i>C</i><sub>1</sub><i>B</i>² (<i>теорема Карно</i>).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка