Олимпиадные задачи из источника «параграф 1. Векторы сторон многоугольников» для 10 класса - сложность 2-4 с решениями
параграф 1. Векторы сторон многоугольников
НазадДано <i>n</i>попарно не сонаправленных векторов (<i>n</i>$\ge$3), сумма которых равна нулю. Докажите, что существует выпуклый<i>n</i>-угольник, набор векторов сторон которого совпадает с данным набором векторов.
Пусть <i>E</i>и <i>F</i> — середины сторон<i>AB</i>и <i>CD</i>четырехугольника<i>ABCD</i>,<i>K</i>,<i>L</i>,<i>M</i>и <i>N</i> — середины отрезков<i>AF</i>,<i>CE</i>,<i>BF</i>и <i>DE</i>. Докажите, что<i>KLMN</i> — параллелограмм.
Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.
Стороны треугольника <i>T</i>параллельны медианам треугольника <i>T</i><sub>1</sub>. Докажите, что медианы треугольника <i>T</i>параллельны сторонам треугольника <i>T</i><sub>1</sub>.
а) Докажите, что из медиан треугольника можно составить треугольник. б) Из медиан треугольника<i>ABC</i>составлен треугольник<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>, а из медиан треугольника<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>составлен треугольник<i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>. Докажите, что треугольники<i>ABC</i>и <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>подобны, причем коэффициент подобия...