Олимпиадные задачи из источника «глава 2. Четность» для 8 класса - сложность 1-4 с решениями

На прямой сидят три кузнечика, каждую секунду прыгает один кузнечик. Он прыгает через какого-нибудь кузнечика (но не через двух сразу).

Докажите, что через 1985 секунд они не могут вернуться в исходное положение.

Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?

В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.

Могут ли они вращаться?

Докажите, что выпуклый 13-угольник нельзя разрезать на параллелограммы.

В народной дружине 100 человек. Каждый вечер на дежурство выходят трое.

Можно ли организовать дежурство так, чтобы через некоторое время оказалось, что каждый дежурил с каждым ровно один раз?

Можно ли так расставить знаки "+" или "–" между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?

В таблице 25×25 расставлены целые числа так, что в каждом столбце и в каждой строчке встречаются все числа от 1 до 25. При этом таблица симметрична относительно главной диагонали. Доказать, что на главной диагонали все числа от 1 до 25 встречаются по одному разу.

Есть 101 монета, из которых 50 фальшивых, отличающихся по весу на 1 грамм от настоящих. Петя взял одну монету и за одно взвешивание на весах со стрелкой, показывающей разность весов на чашках, хочет определить фальшивая ли она. Сможет ли он это сделать?

Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.

Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

За круглым столом сидят 25 мальчиков и 25 девочек. Докажите, что у кого-то из сидящих за столом оба соседа – мальчики.

На прямой отмечено 45 точек, лежащих вне отрезка <i>AB</i>. Докажите, что сумма расстояний от этих точек до точки <i>A</i> не равна сумме расстояний от этих точек до точки <i>B</i>.

К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.

Докажите, что хотя бы одна цифра полученной суммы чётна.

Можно ли составить магический квадрат из первых 36 простых чисел?

<i>Магический квадрат</i> – это квадратная таблица, заполненная числами, в которой суммы чисел во всех строках и столбцах равны.

На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно обеих главных диагоналей.

Докажите, что одна из шашек стоит в центральной клетке.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка