Олимпиадные задачи из источника «глава 10. Неравенства» - сложность 4 с решениями
Пусть α = (α<sub>1</sub>, ..., α<sub><i>n</i></sub>) и β = (β<sub>1</sub>, ..., β<sub><i>n</i></sub>) – два набора показателей с равной суммой.
Докажите, что, если α ≠ β, то при всех неотрицательных <i>x</i><sub>1</sub>, ..., <i>x<sub>n</sub></i> выполняется неравенство <i>T</i><sub>α</sub>(<i>x</i><sub>1</sub>, ..., <i>x<sub>n</sub></i>) ≥ <i>T</i><sub>β</sub>(<i>x</i><sub>1</sub>, ..., <i>x<sub>n</sub></i>).
Определение многочленов <i>T</i><sub>α</sub> смотри в задаче <a href="https://...
Докажите, что если α < 0 < β, то <i>S</i><sub>α</sub>(<b><i>x</i></b>) ≤ <i>S</i><sub>0</sub>(<b><i>x</i></b>) ≤ <i>S</i><sub>β</sub>(<b><i>x</i></b>), причём <img align="absMIDDLE" src="/storage/problem-media/61414/problem_61414_img_2.gif">
Определение средних степенных <i>S</i><sub>α</sub>(<b><i>x</i></b>) можно посмотреть в <a href="https://problems.ru/thes.php?letter=17#srednee_stepennoe">справочнике</a>.
Докажите, что если α < β и αβ ≠ 0, то <i>S</i><sub>α</sub>(<b><i>x</i></b>) ≤ <i>S</i><sub>β</sub>(<b><i>x</i></b>).
Определение средних степенных <i>S</i><sub>α</sub>(<b><i>x</i></b>) можно посмотреть в <a href="https://problems.ru/thes.php?letter=17#srednee_stepennoe">справочнике</a>.