Олимпиадные задачи по теме «Методы» для 1-2 класса

Последовательности положительных чисел (<i>x<sub>n</sub></i>) и (<i>y<sub>n</sub></i>) удовлетворяют условиям   <img align="absmiddle" src="/storage/problem-media/109842/problem_109842_img_2.gif">   при всех натуральных <i>n</i>. Докажите, что если все числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>y</i><sub>1</sub>, <i>y</i><sub>2</sub> больше 1, то  <i>x<sub>n</sub> > y<sub>n</sub></i>  при каком-нибудь натуральном <i>n</i>.

Квадрат со стороной 9 клеток разрезали по линиям сетки на 14 прямоугольников таким образом, что длина каждой стороны любого прямоугольника не меньше, чем две клетки. Могло ли оказаться так, что среди этих прямоугольников не было ни одного квадрата?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка