Олимпиадные задачи по теме «Вспомогательная раскраска» - сложность 1 с решениями

На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но а) рубашкой вверх; б) рубашкой вниз и вверх ногами?

а) Из шахматной доски вырезали клетку a1. Можно ли то, что осталось, замостить доминошками 1×2?

б) Тот же вопрос, если вырезали две клетки a1 и h8.

в) Тот же вопрос, если вырезали клетки a1 и h1.

<b>Участок <var>m</var>×<var>n</var>.</b>Прямоугольный участок размера<var>m</var>×<var>n</var>разбит на квадраты 1×1. Каждый квадрат является отдельным участком, соединенным калитками с соседними участками. При каких размерах участка можно обойти все квадратные участки, побывав в каждом по одному разу, и вернуться в первоначальный?

Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).

Можно ли расставить их в таблице 4×4 так, чтобы разность каждых двух чисел, стоящих в соседних по стороне клетках, не делилась на 4?

Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?

Дан лист клетчатой бумаги. Каждый узел сетки обозначается некоторой буквой. Каким наименьшим числом различных букв нужно обозначить эти узлы, чтобы на отрезке (идущем по сторонам клеток - прим.ред.), соединяющем два узла, обозначенных одинаковыми буквами, находился, по крайней мере, один узел, обозначенный одной из других букв?

На каждой из клеток доски размером 9×9 находится фишка. Петя хочет передвинуть каждую фишку на соседнюю по стороне клетку так, чтобы снова в каждой из клеток оказалось по одной фишке. Сможет ли Петя это сделать?

Назовем крокодилом шахматную фигуру, ход которой заключается в прыжке на m клеток по вертикали или по горизонтали, и потом на n клеток в перпендикулярном направлении. Докажите что для любых m и n можно так раскрасить бесконечную клетчатую доску в 2 цвета (для каждых конкретных m и n своя раскраска), что всегда 2 клетки, соединенные одним ходом крокодила, будут покрашены в разные цвета.

Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?

Конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка