Олимпиадные задачи по теме «Методы математического анализа» для 8 класса - сложность 4 с решениями

Дан треугольник <i>ABC</i>. Прямая <i>l</i> касается вписанной в него окружности. Обозначим через <i>l<sub>a</sub>, l<sub>b</sub>, l<sub>c</sub></i> прямые, симметричные <i>l</i> относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику <i>ABC</i>.

Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:

  а) по 5 шахматистов;

  б) произвольное равное число шахматистов.

Найдите все такие пары  (<i>x, y</i>)  натуральных чисел, что  <i>x + y = a<sup>n</sup>,  x</i>² + <i>y</i>² = <i>a<sup>m</sup></i>  для некоторых натуральных <i>a, n, m</i>.

Два многочлена  <i>P</i>(<i>x</i>) = <i>x</i><sup>4</sup> + <i>ax</i>³ + <i>bx</i>² + <i>cx + d</i>  и  <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>px + q</i>  принимают отрицательные значения на некотором интервале <i>I</i> длины более 2, а вне <i>I</i> – неотрицательны. Докажите, что найдётся такая точка <i>x</i><sub>0</sub>, что  <i>P</i>(<i>x</i><sub>0</sub>) < <i>Q</i>(<i>x</i><sub>0</sub>).

Известно, что  <i>f</i>(<i>x</i>), <i>g</i>(<i>x</i>) и <i>h</i>(<i>x</i>) – квадратные трёхчлены. Может ли уравнение  <i>f</i>(<i>g</i>(<i>h</i>(<i>x</i>)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

Рассматривается произвольный многоугольник (возможно, невыпуклый).

  а) Всегда ли найдётся хорда этого многоугольника, которая делит его площадь пополам?

  б) Докажите, что найдётся такая хорда, что площадь каждой из частей, на которые она разбивает многоугольник, не меньше чем &frac13; площади всего многоугольника.   в) Можно ли в пункте б) заменить число &frac13; на большее? (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).

Посередине между двумя параллельными улицами стоят в один ряд одинаковые дома со стороной, равной <i>a</i>. Расстояние между улицами – 3<i>a</i>, а расстояние между двумя соседними домами – 2<i>a</i> (см. рис.). <div align="center"><img src="/storage/problem-media/78571/problem_78571_img_2.gif"></div>Одна улица патрулируется полицейскими, которые движутся на расстоянии 9<i>a</i> друг от друга со скоростью <i>v</i>. К тому времени, как первый полицейский проходит мимо середины некоторого дома, точно напротив него на другой улице появляется гангстер. С какой постоянной скоростью и в какую сторону должен двигаться по этой улице гангстер, чтобы ни один полицейский его не заметил?

На числовой оси отмечено бесконечно много точек с натуральными координатами. Когда по оси катится колесо, каждая отмеченная точка, по которой проехало колесо, оставляет на нём точечный след. Докажите, что можно выбрать такое действительное $R$, что если прокатить по оси, начиная из нуля, колесо радиуса $R$, то на каждой дуге колеса величиной в $1^\circ$ будет след хотя бы одной отмеченной точки.

В каждый узел бесконечной клетчатой бумаги воткнута вертикальная булавка. Иголка длины<i>l</i>лежит на бумаге параллельно линиям сетки. При каких<i>l</i>иголку можно повернуть на 90°, не выводя из плоскости бумаги? Иголку разрешается как угодно двигать по плоскости, но так, чтобы она проходила между булавками; толщиной булавок и иголки пренебречь.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка