Олимпиадные задачи по теме «Индукция» для 7 класса - сложность 1 с решениями

Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните.

Любую ли сумму из целого числа рублей, больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 руб.? Почему?

На плоскости проведено<i>n</i>прямых линий. Доказать, что области, на которые эти прямые разбивают плоскость, можно так закрасить двумя красками (каждая область закрашивается только одной краской), что никакие две соседние области (т.е. области, соприкасающиеся только по отрезку прямой) не будут закрашены одной и той же краской.

Докажите тождество: 1 + 3 + 5 +...+ (2<i>n</i>– 1) =<i>n</i><sup>2</sup>.

Число<i>x</i>таково, что число<i>x</i>+${\dfrac{1}{x}}$ — целое. Докажите, что при любом натуральном<i>n</i>число<i>x</i><sup>n</sup>+${\frac{1}{x^n}}$также является целым.

Известно, что  <i>x</i> + <sup>1</sup>/<sub><i>x</i></sub>  – целое число. Докажите, что  <i>x<sup>n</sup></i> + <sup>1</sup>/<sub><i>x<sup>n</sup></i></sub>  – также целое при любом целом <i>n</i>.

Несколько прямых делят плоскость на части. Докажите, что эти части можно раскрасить в 2 цвета так, что граничащие части будут иметь разный цвет.

<i>n</i> – натуральное число. Докажите, что  2<sup><i>n</i></sup> ≥ 2<i>n</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка