Олимпиадные задачи по теме «Алгебраические методы» для 7 класса - сложность 4 с решениями

Можно ли в клетках бесконечного клетчатого листа расставить натуральные числа таким образом, чтобы при любых натуральных  <i>m, n</i> > 100  сумма чисел в любом прямоугольнике <i>m</i>×<i>n</i> клеток делилась на  <i>m + n</i>?

В некоторых клетках доски 2<i>n</i>×2<i>n</i> стоят чёрные и белые фишки. С доски сначала снимаются все чёрные фишки, которые стоят в одной вертикали с какой-то белой, а затем все белые фишки, стоящие в одной горизонтали с какой-нибудь из оставшихся чёрных. Докажите, что либо чёрных, либо белых фишек на доске осталось не более <i>n</i>².

В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо один, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?

Обозначим<i> S</i>(<i>x</i>)сумму цифр числа<i> x </i>. Найдутся ли три таких натуральных числа<i> a </i>,<i> b </i>и<i> c </i>, что<i> S</i>(<i>a+b</i>)<i><</i>5,<i> S</i>(<i>a+c</i>)<i><</i>5и<i> S</i>(<i>b+c</i>)<i><</i>5, но<i> S</i>(<i>a+b+c</i>)<i>></i>50?

Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

См. задачу <a href="https://mirolimp.ru/tasks/179385">179385</a> в) и г).

Можно ли расставить цифры 0, 1 и 2 в клетках листа клетчатой бумаги размером 100×100 таким образом, чтобы в каждом прямоугольнике размером 3×4, стороны которого идут по сторонам клеток, оказалось бы три нуля, четыре единицы и пять двоек?

Треугольная таблица строится по следующему правилу: в верхней её строке написано одно только натуральное число<nobr><i>a</i> > 1,</nobr>а далее под каждым<nobr>числом <i>k</i></nobr>слева пишем число<i>k</i><sup>2</sup>, а<nobr>справа —</nobr>число<nobr><i>k</i> + 1.</nobr>Докажите, что в каждой строке таблицы все числа разные.Например, при <nobr><i>a</i> = 2</nobr> вторая строка состоит из чисел 4 <nobr>и 3,</nobr> <nobr>третья —</nobr> из чисел 16, 5, 9 <nobr>и 4, </nobr> <nobr>четвёртая —</nobr> из чисел 256, 17, 25, 6, 81, 10, 16 <nobr>и 5.</nobr>

По окружности выписаны <i>n</i> чисел  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub><i>n</i></sub>,  каждое из которых равно 1 или –1, причём сумма произведений соседних чисел равна нулю и вообще для каждого  <i>k</i> = 1, 2, ..., <i>n</i> – 1  сумма <i>n</i> произведений чисел, отстоящих друг от друга на <i>k</i> мест, равна нулю

(то есть  <i>x</i><sub>1</sub><i>x</i><sub>2</sub> + <i>x</i><sub>2</sub><i>x</i><sub>3</sub> + ... + <i>x<sub>n</sub>x</i><sub>1</sub> = 0,  <i>x</i><sub&gt...

Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.

<img src="/storage/problem-media/73554/problem_73554_img_2.gif" width="172" height="69" vspace="10" hspace="20" align="right">В бесконечной цепочке нервных клеток каждая может находиться в одном из двух состояний: «покой» и «возбуждение». Если в данный момент клетка возбудилась, то она посылает сигнал, который через единицу времени (скажем, через одну миллисекунду) доходит до обеих соседних с ней клеток. Каждая клетка возбуждается в том и только в том случае, если к ней приходит сигнал от одной из соседних клеток; если сигналы приходят одновременно с двух сторон, то они погашаются, и клетка не возбуждается. Например, если в начальной момент времени<nobr><i>t</i> = 0</nobr>возбудить три соседние клетки...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка