Олимпиадные задачи по теме «Функции одной переменной. Непрерывность» - сложность 5 с решениями

Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника <i>m×n</i> числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.

Для заданных натуральных чисел <i>k<sub>0</sub></i><<i>k<sub>1</sub></i><<i>k<sub>2</sub></i> выясните, какое наименьшее число корней на промежутке <nobr>[0; 2π)</nobr> может иметь уравнение вида sin<i>(k<sub>0</sub>x</i>)+<i>A<sub>1</sub></i>·sin(<i>k<sub>1</sub>x</i>) +<i>A<sub>2</sub></i>·sin(<i>k<sub>2</sub>x</i>)=0где<i>A<sub>1</sub></i>,<i>A<sub>2</sub></i>– вещественные числа.

Пусть<i>l</i><sub>1</sub>,<i>l</i><sub>2</sub>, ...,<nobr><i>l</i><sub><i>n</i></sub> —</nobr>несколько прямых на плоскости, не все из которых параллельны. Докажите, что можно единственным образом выбрать на каждой из этих прямых по точке<i>X</i><sub>1</sub>,<i>X</i><sub>2</sub>, ...,<i>X</i><sub><i>n</i></sub>так, чтобы перпендикуляр, восставленный к прямой<i>l</i><sub><i>k</i></sub>в точке<i>X</i><sub><i>k</i></sub>(для любого натурального<nobr><i>k</i> < <i>n</i>),</nobr>проходил через точку<i>X...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка