Олимпиадные задачи по теме «Аффинная геометрия» для 4-9 класса - сложность 4 с решениями
Аффинная геометрия
НазадДан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.
В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из <i>k</i> цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
а) <i>k</i> = 7; б) <i>k</i> = 10.
Докажите, что любое аффинное преобразование можно представить в виде композиции двух растяжений и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.
Докажите, что если при аффинном (не тождественном) преобразовании <i>L</i>каждая точка некоторой прямой <i>l</i>переходит в себя, то все прямые вида<i>ML</i>(<i>M</i>), где в качестве <i>M</i>берутся произвольные точки, не лежащие на прямой <i>l</i>, параллельны друг другу.
Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Докажите, что аффинным преобразованием этот пятиугольник можно перевести в правильный пятиугольник.