Олимпиадные задачи по теме «Теория групп» - сложность 1-2 с решениями
Теория групп
НазадВ некотором городе разрешаются только парные обмены квартир (если две семьи обмениваются квартирами, то в тот же день они не имеют права участвовать в другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).
Некоторый текст зашифровали, поставив в соответствие каждой букве некоторую (возможно, ту же самую букву) букву так, что текст можно однозначно расшифровать. Докажите, что найдется такое число N, что после N-кратного применения шифрования заведомо получится исходный текст. Найдите из всех таких значений N наименьшее, годящееся для всех шифров (при условии, что в алфавите 33 буквы). (Задача с сайта<a href="http://www.cryptography.ru">www.cryptography.ru</a>.)
Нескольким детям дали по карандашу одного из трех цветов. Дети как-то поменялись карандашами, после чего у каждого оказался не тот карандаш, который был у него вначале. Докажите, что цвета карандашей могли быть такими, что у каждого вначале и в конце карандаши были разных цветов.
Комбинация <i>А</i> поворотов кубика Рубика называется <i>порождающей</i>, если среди результатов многократного применения комбинации <i>А</i> встретятся всевозможные состояния, в которые можно перевести кубик Рубика при помощи поворотов. Существует ли порождающая комбинация поворотов?