Задача
Комбинация А поворотов кубика Рубика называется порождающей, если среди результатов многократного применения комбинации А встретятся всевозможные состояния, в которые можно перевести кубик Рубика при помощи поворотов. Существует ли порождающая комбинация поворотов?
Решение
Предположим противное. Обозначим через А порождающую комбинацию, а за X начальное состояние кубика. Тогда в последовательности X, A(X), A(A(X)), ... встретятся все состояния кубика. Возьмём два простых поворота кубика: P – поворот правой грани, Q – поворот верхней грани. Применив поворот P к состоянию X, получим состояние P(X). Согласно нашему предположению оно совпадает с некоторым состоянием вида Am(X) для некоторого натурального m. Аналогично Q(X) = An(X) для некоторого натурального n. Тогда P(Q(X)) = Q(P(X)) = Am+n(X). Однако нетрудно проверить, что результат последовательного выполнения поворотов P и Q отличается от результата последовательного выполнения поворотов Q и P. Противоречие.
Ответ
Не существует.
Чтобы оставлять комментарии, войдите или зарегистрируйтесь