Олимпиадные задачи по теме «Последовательности» для 10 класса - сложность 1 с решениями

Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

Последовательность из двух различных чисел продолжили двумя способами: так, чтобы получилась геометрическая прогрессия, и так, чтобы получилась арифметическая прогрессия. При этом третий член геометрической прогрессии совпал с десятым членом арифметической прогрессии. А с каким членом арифметической прогрессии совпал четвёртый член геометрической прогрессии?

Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?

Доказать, что если целое  <i>n</i> > 1,  то  1<sup>1</sup>·2²·3³·...·<i>n<sup>n</sup> < n</i><sup><i>n</i>(<i>n</i>+1)/2</sup>.

Докажите следующие свойства функций <i>g<sub>k,l</sub></i>(<i>x</i>) (определения функций <i>g<sub>k,l</sub></i>(<i>x</i>) смотри <a href="https://problems.ru/thes.php?letter=12#gaussa">здесь</a>):

  а)  <i>g<sub>k,l</sub></i>(<i>x</i>) = <img width="93" height="53" align="MIDDLE" border="0" src="/storage/problem-media/61522/problem_61522_img_2.gif">,  где  <i>h<sub>m</sub></i>(<i>x</i>) = (1 – <i>x</i>)(1 – <i>x</i>²)...(1 – <i>x<sup>m</sup></i>)   (<i>h</i><sub>0</sub>(<i>x</i>) = 1)...

Докажите, что геометрическая прогрессия{<i>a</i><sub>n</sub>} =<i>bx</i><sub>0</sub><sup>n</sup>удовлетворяет соотношению (<a href="https://mirolimp.ru/tasks/161458">11.2</a>) тогда и только тогда, когда<i>x</i><sub>0</sub>-- корень характеристического уравнения (<a href="https://mirolimp.ru/tasks/161458">11.3</a>) последовательности {<i>a</i><sub>n</sub>}.

<i>Определение.</i>Последовательность чисел<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>,...,<i>a</i><sub>n</sub>,..., которая удовлетворяет с заданными<i>p</i>и<i>q</i>соотношению<div><table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"><td align="CENTER"> <i>a</i><sub>n+2</sub>=<i>p</i><i>a</i><sub>n+1</sub>+<i>q</i><i>a</i><sub>n</sub> </td><td> (<i>n</i>=0,1,2,...)</td> <td nowrap width="10" align="RIGHT"> (11.2)</td></tr> </tab...

Найдите последовательность {<i>a</i><sub>n</sub>} такую, что$\Delta$<i>a</i><sub>n</sub>=<i>n</i><sup>2</sup>. Используя результат предыдущей задачи, получите формулу для суммы1<sup>2</sup>+ 2<sup>2</sup>+ 3<sup>2</sup>+...+<i>n</i><sup>2</sup>.

Пусть даны последовательности чисел {<i>a</i><sub>n</sub>} и {<i>b</i><sub>n</sub>}, связанные соотношением$\Delta$<i>b</i><sub>n</sub>=<i>a</i><sub>n</sub>,    (<i>n</i>= 1, 2,...). Как связаны частичные суммы<i>S</i><sub>n</sub>последовательности {<i>a</i><sub>n</sub>}<div align="CENTER"> <i>S</i><sub>n</sub> = <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> +...+ <i>a</i><sub>n</sub> </div>с последовательностью {<i>b</i><sub>n</sub>}?

Найдите <table> <tr><td align="LEFT">а) $\Delta$<i>n</i><sup>2</sup>;    </td> <td align="LEFT">в) $\Delta$<i>n</i><sup>k</sup>;</td> </tr> <tr><td align="LEFT">б) $\Delta$<i>n</i>(<i>n</i> - 1);    </td> <td align="LEFT">д) $\Delta$<i>C</i><sub>n</sub><sup>k</sup>.</td> </tr> </table>

Докажите неравенство для натуральных  <i>n</i> > 1:   <img align="MIDDLE" src="/storage/problem-media/60304/problem_60304_img_2.gif">

Докажите тождество:${\dfrac{1^2}{1\cdot3}}$+${\dfrac{2^2}{3\cdot5}}$+...+${\dfrac{n^2}{(2n-1)(2n+1)}}$=${\dfrac{n(n+1)}{2(2n+1)}}$.

Докажите тождество: 1<sup>2</sup>+ 3<sup>2</sup>+...+ (2<i>n</i>- 1)<sup>2</sup>=$\displaystyle {\textstyle\frac{1}{3}}$<i>n</i>(2<i>n</i>- 1)(2<i>n</i>+ 1).

Найти сумму а)<b>1+11+111+...+111...1</b>, где последнее число содержит<b><i>n</i></b>единиц; б)аналогичная задача, когда вместо единиц стоят пятерки.

Дорожно-ремонтная организация "Тише едешь - дальше будешь" занимается укладкой асфальта. Организация взяла обязательство покрыть асфальтом 100-километровый участок дороги. В первый день был заасфальтирован 1 км дороги. Далее, если уже заасфальтировано x км дороги, то в следующий день организация покрывает асфальтом еще 1/x км дороги. Докажите, что все же наступит тот день, когда организация "Тише едешь - дальше будешь" выполнит свое обязательство.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка