Олимпиадные задачи по теме «Графики и ГМТ на координатной плоскости» для 10 класса - сложность 4 с решениями
Графики и ГМТ на координатной плоскости
НазадНа плоскости даны оси координат с одинаковым, но не обозначенным масштабом и график функции <center><i>
y= sin x, x<img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_2.gif"></i>(0<i>;α</i>)<i>.
</i></center> Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а)<i> α<img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_2.gif"></i>(<i><img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_3.gif">;π</i>); б)<i> α<img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_2.gif">&...
Многочлен <i>P</i>(<i>x</i>) с действительными коэффициентами таков, что уравнение <i>P</i>(<i>m</i>) + <i>P</i>(<i>n</i>) = 0 имеет бесконечно много решений в целых числах <i>m</i> и <i>n</i>.
Докажите, что у графика <i>y = P</i>(<i>x</i>) есть центр симметрии.
На оси <i>Ox</i> произвольно расположены различные точки <i>X</i><sub>1</sub>, ..., <i>X<sub>n</sub></i>, <i>n</i> ≥ 3. Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось <i>Ox</i> в данных точках (и не пересекающие ееё в других точках). Пусть <i>y = f</i><sub>1</sub>(<i>x</i>), ..., <i>y = f<sub>m</sub></i>(<i>x</i>) – соответствующие параболы. Докажите, что парабола <i>y = f</i><sub>1</sub>(<i>x</i>) + ... + <i>f<sub>m</sub></i>(<i>x</i>) пересекает ось <i>Ox</i> в двух точках.
Дана последовательность неотрицательных чисел<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a<sub>n</sub> </i>. Для любого<i> k </i>от 1 до<i> n </i>обозначим через<i> m<sub>k</sub> </i>величину <center><i>
<img src="/storage/problem-media/109710/problem_109710_img_2.gif"><sub>l=</sub></i>1<i>,</i>2<i>,..,k <img src="/storage/problem-media/109710/problem_109710_img_3.gif">.
</i></center> Докажите, что при любом<i> α></i>0число тех<i> k </i>, для которых<i> m<sub>k</sub>>α </i>, меньше, чем<i>a<sub>1</sub>+...
Перед Алёшей 100 закрытых коробочек, в каждой – либо красный, либо синий кубик. У Алёши на счету есть рубль. Он подходит к любой закрытой коробочке, объявляет цвет и ставит любую сумму (можно нецелое число копеек, но не больше, чем у него на счету в данный момент). Коробочка открывается, и Алёшин счет увеличивается или уменьшается на поставленную сумму в зависимости от того, угадан или не угадан цвет кубика. Игра продолжается, пока не будут открыты все все коробочки. Какую наибольшую сумму на счету может гарантировать себе Алёша, если ему известно, что
a) синий кубик только один;
б) синих кубиков ровно <i>n</i>.
(Алёша может поставить и 0, то есть просто бесплатно открыть коробочку и увидеть цвет кубика.)