Назад

Олимпиадная задача по планиметрии: отражения лучей на окружностях, 8–11 класс

Задача

Две окружности пересекаются в точках P и Q. Из точки Q пустили в каждую из окружностей по одному лучу, которые отражаются от окружностей по закону "угол падения равен углу отражения". Точки касания траектории первого луча – A1, A2, ..., второго – B1, B2, ... . Оказалось, что точки A1, B1 и P лежат на одной прямой. Докажите, что тогда все прямые AiBi проходят через точку P.

Решение

При отражении лучей от окружностей выполняются условия  QA1 = A1A2 = A2A3 = ...  и QB1 = B1B2 = B2B3 = ... . Значит,

∠(PQ, PA1) = ∠(PA1, PA2) = ∠(PA2, PA3) = ...  и  ∠(PQ, PB1) = ∠(PB1, PB2) = ∠(PB2, PB3) = ...  (углы ориентированные). Кроме того, так как точки A1, B1, P лежат на одной прямой, то  ∠(PQ, PA1) = ∠(PQ, PB1).  Следовательно, при любом i имеем  ∠(PAi–1, PAi) = ∠(PBi–1, PBi),  откуда по индукции получаем, что точки Ai, Bi, P лежат на одной прямой.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет