Олимпиадные задачи по математике для 11 класса - сложность 3 с решениями
Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>.
а) Конечно или бесконечно число таких пар натуральных чисел (<i>a, b</i>), что <i>a ≠ b</i> и <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?
б) А если при этом дополнительно требуется, чтобы <i>C</i>(<i>a + b</i>) > 1000?
Банк обслуживает миллион клиентов, список которых известен Остапу Бендеру. У каждого есть свой PIN-код из шести цифр, у разных клиентов коды разные. Остап Бендер за один ход может выбрать любого клиента, которого он еще не выбирал, и подсмотреть у него цифры кода на любых <i>N</i> позициях (у разных клиентов он может выбирать разные позиции). Остап хочет узнать код миллионера Корейко. При каком наименьшем <i>N</i> он гарантированно сможет это сделать?
Учитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен <i>P</i>(<i>x</i>) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им <i>k</i> целых чисел <i>n</i><sub>1</sub>, <i>n</i><sub>2</sub>, ..., <i>n<sub>k</sub></i> и отдельно сообщит значение выражения <i>P</i>(<i>n</i><sub>1</sub>)<i>P</i>(<i>n</i><sub>2</sub>)...<i>P</i>(<i>n<sub>k</sub></i>). По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем <i>k</i> учитель сможет составить задач...
Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?
Дан многочлен двадцатой степени с целыми коэффициентами. На плоскости отметили все точки с целыми координатами, у которых ординаты не меньше 0 и не больше 10. Какое наибольшее число отмеченных точек может лежать на графике этого многочлена?
Можно ли <i>n</i> раз рассадить 2<i>n</i> + 1 человек за круглым столом, чтобы никакие двое не сидели рядом более одного раза, если
а) <i>n</i> = 5; б) <i>n</i> = 4; в) <i>n</i> – произвольное натуральное число?