Олимпиадные задачи по математике для 4-8 класса
<i>ABC</i> – равнобедренный прямоугольный треугольник. На продолжении гипотенузы <i>AB</i> за точку <i>A</i> взята точка <i>D</i> так, что <i>AB</i> = 2<i>AD</i>. Точки <i>M</i> и <i>N</i> на стороне <i>AC</i> таковы, что <i>AM = NC</i>. На продолжении стороны <i>CB</i> за точку <i>B</i> взята такая точка <i>K</i>, что <i>CN = BK</i>. Найдите угол между прямыми <i>NK</i> и <i>DM</i>.
В окружности $\omega$, описанной около треугольника $ABC$, хорда $KL$ проходит через середину $M$ отрезка $AB$ и перпендикулярна ей. Некоторая окружность проходит через точки $L$ и $M$ и пересекает отрезок $CK$ в точках $P$ и $Q$ ($Q$ лежит на отрезке $KP$). Пусть $LQ$ пересекает описанную окружность треугольника $KMQ$ в точке $R$. Докажите, что четырехугольник $APBR$ вписанный.
На стороне <i>AB</i> четырёхугольника <i>ABCD</i> нашлась такая точка <i>M</i>, что четырёхугольники <i>AMCD</i> и <i>BMDC</i> описаны около окружностей с центрами <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> соответственно. Прямая <i>O</i><sub>1</sub><i>O</i><sub>2</sub> отсекает от угла <i>CMD</i> равнобедренный треугольник с вершиной <i>M</i>. Докажите, что четырёхугольник <i>ABCD</i> вписанный.
В угол вписаны непересекающиеся окружности ω<sub>1 </sub> и ω<sub>2</sub>. Рассмотрим все такие пары параллельных прямых <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub>, что <i>l</i><sub>1</sub> касается ω<sub>1</sub>, <i>l</i><sub>2</sub> касается ω<sub>2</sub> (ω<sub>1</sub>, ω<sub>2</sub> находятся между <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub>). Докажите, что средние линии всех трапеций, образованных прямыми <i>l</i><sub>1</sub>, <i>l</i><sub>2</sub> и сторонами данного угла, касаются фиксированной окружности.