Олимпиадные задачи по математике - сложность 2 с решениями
B трапеции <i>ABCD</i> <i>AB</i> = <i>BC</i> = <i>CD</i>, <i>CH</i> – высота. Докажите, что перпендикуляр, опущенный из <i>H</i> на <i>AC</i>, проходит через середину <i>BD</i>.
На стороне $AC$ треугольника $ABC$ во внешнюю сторону был построен квадрат с центром $F$. Затем всё стерли, кроме точки $F$ и середин $N$, $K$ сторон $BC$, $AB$ соответственно. Восстановите треугольник.