Олимпиадные задачи по математике для 7 класса

Казино предлагает игру по таким правилам. Игрок ставит любое целое число долларов (но не больше, чем у него в этот момент есть) либо на орла, либо на решку. Затем подбрасывается монета. Если игрок угадал, как она упадёт, он получает назад свою ставку и столько же денег впридачу. Если не угадал — его ставку забирает казино. Если игроку не повезёт четыре раза подряд, казино присуждает ему в следующей игре утешительную победу вне зависимости от того, как упадёт монета. Джо пришёл в казино со 100 долларами. Он обязался сделать ровно пять ставок и ни разу не ставить больше 17 долларов. Какую наибольшую сумму денег он сможет гарантированно унести из казино после такой игры?

В треугольнике <i>ABC</i> высота <i>AH</i> делит медиану <i>BM</i> пополам. Докажите, что из медиан треугольника <i>ABM</i> можно составить прямоугольный треугольник.

Петя вырезал из пластмассы неравносторонний треугольник. Покажите, каким образом можно, пользуясь только этим инструментом как шаблоном, построить биссектрису какого-нибудь угла треугольника, равного вырезанному.

Треугольник <i>ABC</i> равнобедренный  (<i>AB = BC</i>).  Точка <i>M</i> – середина стороны <i>AB</i>, точка <i>P</i> – середина отрезка <i>CM</i>, точка <i>N</i> делит сторону <i>BC</i> в отношении  3 : 1  (считая от вершины <i>B</i>). Докажите, что  <i>AP = MN</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка