Олимпиадные задачи по математике для 10 класса - сложность 3 с решениями
В выпуклом пятиугольнике <i>ABCDE</i>: ∠<i>A</i> = ∠<i>C</i> = 90°, <i>AB = AE</i>, <i>BC = CD</i>, <i>AC</i> = 1. Найдите площадь пятиугольника.
Казино предлагает игру по таким правилам. Игрок ставит любое целое число долларов (но не больше, чем у него в этот момент есть) либо на орла, либо на решку. Затем подбрасывается монета. Если игрок угадал, как она упадёт, он получает назад свою ставку и столько же денег впридачу. Если не угадал — его ставку забирает казино. Если игроку не повезёт четыре раза подряд, казино присуждает ему в следующей игре утешительную победу вне зависимости от того, как упадёт монета. Джо пришёл в казино со 100 долларами. Он обязался сделать ровно пять ставок и ни разу не ставить больше 17 долларов. Какую наибольшую сумму денег он сможет гарантированно унести из казино после такой игры?
Какое наибольшее количество граней n-угольной пирамиды может быть перпендикулярно основанию?
Точки <i>M</i> и <i>N</i> – середины сторон <i>AB</i> и <i>CD</i> соответственно четырёхугольника <i>ABCD</i>. Известно, что <i>BC || AD</i> и <i>AN = CM</i>.
Верно ли, что <i>ABCD</i> – параллелограмм?
Из точки <i>A</i> к окружности ω проведена касательная <i>AD</i> и произвольная секущая, пересекающая окружность в точках <i>B</i> и <i>C</i> (<i>B</i> лежит между точками <i>A</i> и <i>C</i>). Докажите, что окружность, проходящая через точки <i>C</i> и <i>D</i> и касающаяся прямой <i>BD</i>, проходит через фиксированную точку (отличную от <i>D</i>).
<i>O</i> – точка пересечения диагоналей трапеции <i>ABCD</i>. Прямая, проходящая через <i>C</i> и точку, симметричную <i>B</i> относительно <i>O</i>, пересекает основание <i>AD</i> в точке <i>K</i>. Докажите, что <i>S<sub>AOK</sub> = S<sub>AOB</sub> + S<sub>DOK</sub></i>.