Олимпиадные задачи по математике - сложность 3 с решениями

Для каждого натурального <i>n</i> обозначим через <i>S<sub>n</sub></i> сумму первых <i>n</i> простых чисел:  <i>S</i><sub>1</sub> = 2,  <i>S</i><sub>2</sub> = 2 + 3 = 5,  <i>S</i><sub>3</sub> = 2 + 3 + 5 = 10,  ... .

Могут ли два подряд идущих члена последовательности (<i>S<sub>n</sub></i>) оказаться квадратами натуральных чисел?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка