Олимпиадные задачи по математике для 6-9 класса - сложность 3 с решениями

Три спортсмена стартовали одновременно из точки <i>A</i> и бежали по прямой в точку <i>B</i> каждый со своей постоянной скоростью. Добежав до точки <i>B</i>, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке <i>A</i>. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от <i>A</i> до <i>B</i> равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?

Каждая точка плоскости раскрашена в один из трех цветов. Обязательно ли найдется треугольник площади 1, все вершины которого имеют одинаковый цвет?

Существует ли такой выпуклый четырехугольник, у которого длины всех сторон и диагоналей в некотором порядке образуют геометрическую прогрессию?

Внутри треугольника <i>ABC</i> взята такая точка <i>D</i>, что  <i>BD = CD</i>,  ∠<i>BDC</i> = 120°.  Вне треугольника <i>ABC</i> взята такая точка <i>E</i>, что  <i>AE = CE</i>,  ∠<i>AEC</i> = 60°  и точки <i>B</i> и <i>E</i> находятся в разных полуплоскостях относительно <i>AC</i>. Докажите, что  ∠<i>AFD</i> = 90°,  где <i>F</i> – середина отрезка <i>BE</i>.

Детектив Ниро Вульф расследует преступление. В деле замешаны 80 человек, среди которых один – преступник, еще один – свидетель преступления (но неизвестно, кто это). Каждый день детектив может пригласить к себе одного или нескольких из этих 80 человек, и если среди приглашенных есть свидетель, но нет преступника, то свидетель сообщит, кто преступник. Может ли детектив заведомо раскрыть дело за 12 дней?

Три велосипедиста ездят в одном направлении по круглому треку длиной 300 метров. Каждый из них движется со своей постоянной скоростью, все скорости различны. Фотограф сможет сделать удачный снимок велосипедистов, если все они окажутся на каком-либо участке трека длиной <i>d</i> метров. При каком наименьшем <i>d</i> фотограф рано или поздно заведомо сможет сделать удачный снимок?

Докажите, что в таблице 8×8 нельзя расставить натуральные числа от 1 до 64 (каждое по одному разу) так, чтобы в ней для любого квадрата 2×2 вида  <img align="middle" src="/storage/problem-media/65205/problem_65205_img_2.png">  было выполнено равенство  |<i>ad – bc</i>| = 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка